Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-α KO mouse.

نویسندگان

  • Aziz Guellich
  • Thibaud Damy
  • Marc Conti
  • Victor Claes
  • Jane-Lise Samuel
  • Thierry Pineau
  • Yves Lecarpentier
  • Catherine Coirault
چکیده

Peroxisome proliferator-activated receptor (PPAR)-α deletion induces a profound decrease in MnSOD activity, leading to oxidative stress and left ventricular (LV) dysfunction. We tested the hypothesis that treatment of PPAR-α knockout (KO) mice with the SOD mimetic tempol prevents the heart from pathological remodelling and preserves LV function. Twenty PPAR-α KO mice and 20 age-matched wild-type mice were randomly treated for 8 wk with vehicle or tempol in the drinking water. LV contractile parameters were determined both in vivo using echocardiography and ex vivo using papillary muscle mechanics. Translational and posttranslational modifications of myosin heavy chain protein as well as the expression and activity of major antioxidant enzymes were measured. Tempol treatment did not affect LV function in wild-type mice; however, in PPAR-α KO mice, tempol prevented the decrease in LV ejection fraction and restored the contractile parameters of papillary muscle, including maximum shortening velocity, maximum extent of shortening, and total tension. Moreover, compared with untreated PPAR-α KO mice, myosin heavy chain tyrosine nitration and anion superoxide production were markedly reduced in PPAR-α KO mice after treatment. Tempol also significantly increased glutathione peroxidase and glutathione reductase activities (~ 50%) in PPAR-α KO mice. In conclusion, these findings demonstrate that treatment with the SOD mimetic tempol can prevent cardiac dysfunction in PPAR-α KO mice by reducing the oxidation of contractile proteins. In addition, we show that the beneficial effects of tempol in PPAR-α KO mice involve activation of the glutathione peroxidase/glutathione reductase system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSLATIONAL PHYSIOLOGY The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet

Chess DJ, Xu W, Khairallah R, O’Shea KM, Kop WJ, Azimzadeh AM, Stanley WC. The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet. Am J Physiol Heart Circ Physiol 295: H2223–H2230, 2008; doi:10.1152/ajpheart.00563.2008.—We have previously shown that high-sugar diets increase mortality and left ventricular (LV)...

متن کامل

The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet.

We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and exacerbated systolic dysfunction after tr...

متن کامل

Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha.

OBJECTIVE Adiponectin is recognized as an antidiabetic, antiatherosclerotic, and anti-inflammatory protein derived from adipocytes. However, the role of adiponectin in cardiac fibrosis remains uncertain. We herein explore the effects of adiponectin on cardiac fibrosis induced by angiotensin II (Ang II). METHODS AND RESULTS Wild-type (WT), adiponectin knockout (Adipo-KO), and PPAR-alpha knocko...

متن کامل

O-2: A Novel Antioxidant Formulation to Treat Male Infertility Emanating from Sperm Oxidative DNA Damage: Promising Preclinical Evidence from Mouse Models

Background: Sperm DNA damage (SDD) is a significant male infertility factor, yet it is not routinely diagnosed or treated in couples undertaking fertility treatment by ART. Men with this condition are likely to experience sub-fertility or infertility, expose their female partners to greater risk of miscarriage and pass on de novo sporadic DNA mutations potentially compromising the health of the...

متن کامل

Salt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder.

Metabolic syndrome is a highly predisposing condition for cardiovascular disease and could be a cause of excess salt-induced organ damage. Recently, several investigators have demonstrated that salt loading causes left ventricular diastolic dysfunction associated with increased oxidative stress and mineralocorticoid receptor activation. We, therefore, investigated whether excess salt induces ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 304 11  شماره 

صفحات  -

تاریخ انتشار 2013